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Abstract. Low temperature and low frequency properties of a spin-boson model are investigated within a
super operator and Liouville space formulation. The leading contributions are identified with the help of
projection operators projecting onto the equilibrium state. The quantities of interest are expressed in terms
of weighted bath propagators and static linear and nonlinear susceptibilities. In particular the generalized
Shiba relation and Wilson ratio are recovered.

PACS. 05.30.-d Quantum statistical mechanics – 66.35.+a Quantum tunneling of defects

1 Introduction

The spin-boson model is one of the simplest models to
study the interplay of quantum mechanics and dissipation
due to the interaction with an environment. It consists in
a quantum mechanical spin 1

2 weakly coupled to a macro-
scopic heat bath made up of harmonic oscillators. This
and similar models of dissipative quantum systems have
been widely studied in the literature [1–3].

The total system including the bath is described
by a Hermitean Hamiltonian and the corresponding
Schrödinger or Heisenberg equation. The goal is, however,
to obtain an effective description of the dynamics of the
subsystem having averaged over the bath degrees of free-
dom. An example is the dynamics of a spin 1

2 ruled by
Bloch equations.

Especially for low frequencies and low temperatures
one expects that an effective description might exist which
is of the same structure as perturbation theory but with
renormalized parameters. This is expected in analogy to
the Landau-Fermi-liquid theory where effective masses
and interactions can be obtained from static expectation
values or experiments.

For the spin-boson model results of this kind are
known. For instance the ratio of the specific heat at low
temperature and the static transverse susceptibility is de-
termined by a bath propagator weighted with the spin-
bath interaction. This has been found by Sassetti and
Weiss [4] as generalization of the corresponding ratio for
the Kondo problem, known as Wilson ratio. Perturbation
theory yields the same result but with the transverse sus-
ceptibility replaced by its free value. Another example is
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the Shiba relation for the Anderson model [5] general-
ized again to the spin-boson model [4]. It states that the
long time behavior of the transverse correlation function
at zero temperature is again given by the static transverse
susceptibility and the long time property of a weighted
bath propagator. Again this result agrees with perturba-
tion theory provided the susceptibility is replaced by its
free value.

The present paper deals with the low frequency and
low temperature properties of a spin-boson system. In par-
ticular a setup is investigated which allows to express the
low frequency and low temperature properties in terms of
bath propagators and static linear and nonlinear suscep-
tibilities. This setup is based on a Liouville space formu-
lation [6,7]. The first Section gives a brief survey of this
formalism. The spin-boson model is introduced in Sec-
tion 2 and the weighted bath propagators are discussed.
Section 3 deals with the long time behavior of trans-
verse and longitudinal correlation and response functions.
This includes the Shiba relation and fluctuation dissipa-
tion theorems. The specific heat at low temperature and
the Wilson ratio are discussed in Section 4. As mentioned
above the present analysis is based on the existence of cer-
tain static linear and nonlinear susceptibilities. The ques-
tion under which conditions they do exist or do not exist
[3], for instance because of localization, is not addressed.
Furthermore the susceptibilities may depend on the high
frequency cutoff of the bath oscillators resulting in non
universal prefactors.

2 Liouville space and super operators

A convenient starting point is a formulation in Liouville
space [6,7]. This is the linear space spanned by quan-
tum mechanical Hermitean operators and each operator Â
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is considered as a vector |A) in this space. Super opera-
tors O are introduced as mappings of the quantum me-
chanical operators onto themselves. An example is the von
Neumann equation for the statistical operator ρ̂(t)

d
dt
ρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
⇔ L(t)

∣∣∣ρ(t)
)

(2.1)

defining the Liouville super operator L(t). Here and in the
following ~ = 1 is assumed.

There are several possibilities to define a scalar prod-
uct. In the following

(A|B) = Tr ÂB̂ (2.2)

is used.
The temporal evolution is described by the super op-

erator U(t, t′) which obeys

d
dt
U(t, t′) = L(t)U(t, t′) (2.3)

with initial condition U(t, t) = I and I|A) = |A).
The measurement of an observable Â can also be rep-

resented as the action of a super operator A with

A |X)⇔ 1
2

{
ÂX̂ + X̂Â

}
(2.4)

where the identity vector |1) obeys A|1) = |A). This al-
lows to write the equilibrium correlation functions for time
independent L and t > t′ as

CAB(t, t′) = (1|AU(t, t′)B|ρ̄). (2.5)

The equilibrium statistical operator obeys L|ρ̄) = 0.
Adding external fields to the Hamiltonian Ĥ(t)→ Ĥ−

hB(t) B̂ response functions are defined as

GAB(t, t′) =
δ 〈Â(t)〉
δ hB(t′)

= (1|AU(t, t′) B̃ |ρ̄) (2.6)

with

B̃ |X)⇔ i
[
B̂, X̂

]
. (2.7)

For spin 1
2 a complete set of quantum mechanical op-

erators is formed by the identity and the Pauli matrices.
They can be used as basis vectors of the corresponding
Liouville space:

|1)⇔
(

1 0
0 1

)
|x)⇔

(
0 1
1 0

)

|y)⇔
(

0 −i
i 0

)
|z)⇔

(
1 0
0 −1

)
. (2.8)

This results in a 4-dimensional representation

|1)⇔


1
0
0
0

 |x)⇔


0
1
0
0



|y)⇔


0
0
1
0

 |z)⇔


0
0
0
1

 . (2.9)

Super operators are then 4× 4 matrices, for instance

σx ⇔


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 σ̃x ⇔ 2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0



σz ⇔


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 σ̃z ⇔ 2


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

. (2.10)

For particles, especially the bath oscillators, the Wigner
representation is used. The corresponding Liouville space
is spanned by functions |X)⇔ X(p, x) of the coordinates
x and momenta p. The scalar product is

(Y |X) =
∫

dpdxY (p, x)X(p, x). (2.11)

The super operators for the measurement of position and
momentum and the corresponding response operators are

x⇔ x x̃⇔ − ∂

∂p

p⇔ p p̃⇔ ∂

∂x
· (2.12)

A general super operator O in Wigner representation is a
function of four variables O(x, p, x′, p′).

The Liouville space of the combined system and bath
oscillators is the direct product of the individual spaces,
for instance the four dimensional space of a spin 1

2 and a
Wigner representation for each bath oscillator.

3 Spin-boson problem

The Hamiltonian of a tunneling center or a spin 1
2 inter-

acting with a thermal bath of N harmonic oscillators is

Ĥ = − 1
2∆σ̂x −

1
2εσ̂z −

1√
N

∑
k

Λkx̂kσ̂z

+ 1
2

∑
k

{
p̂2
k + ω2

k x̂
2
k

}
(3.1)
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where ∆ is the bare tunneling splitting and ε a bias or
anisotropy. Eventually the limit N → ∞ is considered
and the 1/

√
N scaling of the spin-bath coupling constants

is explicitly written down. In the following the isotropic
case ε = 0 is considered primarily, but generalizations to
the general case are possible.

The resulting Liouville operator (2.1) is

L = 1
2∆σ̃x + 1

2εσ̃z +
1√
N

∑
k

Λk
{
σzx̃k + xkσ̃z

}
−
∑
k

{
pk p̃k + ω2

kxkx̃k
}
. (3.2)

The bath is characterized by its density of states

J(ω) =
1
N

∑
k

Λ2
k

ωk
δ(ω − ωk) = αΘ1−sωse−ω/Θ (3.3)

where the special case of a power law dependence is of in-
terest. The case s = 1 is usually referred to as Ohmic case.
A tunneling center in a crystal or glass requires a super
Ohmic spectrum with s = 3. There is a high frequency
cutoff Θ representing the Debye frequency and the same
frequency is used to define the dimensionless coupling con-
stant α for s 6= 1.

Because of the 1/
√
N dependence of the couplings the

correlation and response functions of the bath oscillators
are unperturbed. For an oscillator with frequency ωk the
xk-xk-response function for t > 0 is

Fk(t) =
1
ωk

sinωkt (3.4)

and the corresponding correlation function at temperature
T = 1/β is

Dk(t) =
n(ωk)
ωk

cosωkt (3.5)

with

n(ω) = 1
2 coth 1

2βω. (3.6)

The action of the bath on the spin involves the weighted
bath propagators

F (t) =
1
N

∑
k

Λ2
kFk(t) (3.7)

and

D(t) =
1
N

∑
k

Λ2
kDk(t). (3.8)

Introducing the Fourier transforms

F̂ (ω) =
∫ ∞

0

dt eiωtF (t) (3.9)

and

D̂(ω) =
∫ ∞
−∞

dt eiωtD(t) (3.10)

one finds for the imaginary part of F̂ (ω)

=F̂ (ω) =
π

2
sign(ω)J(|ω|) (3.11)

and for D̂(ω)

D̂(ω) = πn(|ω|)J(|ω|) = 2n(ω)=F̂ (ω). (3.12)

This last expression is a special case of the quantum
mechanical fluctuation dissipation theorem (FDT) [6,7]

ĈAB(ω) = 2n(ω)=ĜAB(ω) (3.13)

which holds for any pair of operators A and B having the
same parity with respect to time reversal.

For the power law density of states (3.3) one finds

F (t) = αΘ2Γ (s+ 1) sin
(

(s+ 1) arctan(Θt)
)

×
(

1 + (Θt)2
)−(s+1)/2

(3.14)

and for T = 0

D0(t) = 1
2αΘ

2Γ (s+ 1) cos
(

(s+ 1) arctan(Θt)
)

×
(

1 + (Θt)2
)−(s+1)/2

. (3.15)

The leading correction for finite temperature is δD(t) =
D(t)−D0(t) with

δD(t) =
∫ ∞

0

dω̄
J(ω̄)

eβω̄ − 1
cos ω̄t

= αT 2 (Θ/T )1−s d(T t) (3.16)

and

d(τ) =
∫ ∞

0

dx
xs

ex − 1
cosxτ

=
∞∑
`=1

Γ (s+ 1) cos
(

(s+ 1) arctan(τ/`)
)

×
(
`2 + τ2

)−(s+1)/2

−→
τ→0

Γ (s+ 1)ζ(s+ 1)− 1
2Γ (s+ 3)ζ(s+ 3)τ2

−→
τ→∞

Γ (s) cos(sπ/2) τ−s + 1
2Γ (s+ 1)

× sin(sπ/2) τ−s−1. (3.17)

A formal perturbation theory for expressions like (2.5)
or (2.6) can be set up by writing

U(t, t′) = T
[

exp
∫ t

t′
dsL(s)

]
(3.18)

operator |ρ̄) = U(t′,−∞)|i) is used. The initial state is
not relevant assuming that the system has equilibrated
at time t′. As a next step the exponential is expanded
in a sum of products of free evolution operators in spin
space and bath operators. Finally all bath operators have
to be contracted in pairs to bath response functions F (t)
or correlation functions D(t).
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4 Long time behavior

The following analysis of the long time behavior is based
on two arguments:

1) The system tends towards equilibrium

U(t) −→
t→∞

|ρ̄)(1| (4.1)

2) The long time properties are ruled by the long time
properties of the averaged bath response function F (t),
(3.14), and the bath correlation function D(t), (3.15) and
(3.16).

In order to isolate the leading contributions at long
time a set of projection operators is introduced

P0 = |ρ̄)(1| (4.2)

P1 =
∑
k

{
x̃k|ρ̄)(1|pk − p̃k|ρ̄)(1|xk

}
P` =

1
`!

:
[∑

k

{
x̃kpk − p̃kxk

}]`
|ρ̄)(1| :

where the normal product : · · · : means that all bath re-
sponse operators x̃k and p̃k have to be arranged to the
left of |ρ̄)(1| and the operators xk and pk to the right.
Furthermore for ` > 1 each value of k may appear only
once.

Assume a projector P` is inserted into the time evo-
lution U(t, t′) at some time t > t0 > t′

U(t, t′)→ U(t, t0)P` U(t0, t′). (4.3)

If the contraction of pairs of bath operators to bath propa-
gators is performed, as outlined at the end of the previous
section, exactly ` such propagators reach from some time
> t0 to some time < t0. The proposal is that the lead-
ing contribution for long time is given by the lowest order
projector which can be inserted.

Let me start with the investigation of the response
function

Gzz(t) = (1|σzU(t, 0)σ̃z |ρ̄)
= (1|σzU(t, 0)σ̃zU(0,−∞)|i). (4.4)

Trying to insert P0 at some time t > t0 > 0 results
in vanishing contributions because (1|U(t0, 0) = (1| and
(1|σ̃z = 0.

Next P1 is inserted. This yields

(1| σzU(t, t0)P1U(t0, 0)σ̃zU(0,−∞)|i)

=
∫ t

t0

ds
∫ t0

0

ds′(1|σzU(t, t0)σ̃z|ρ̄)F (s− s′)

×(1|σzU(t0, 0)σ̃z|ρ̄)

=
∫ t

t0

ds
∫ t0

0

ds′Gzz(t− s)F (s− s′)Gzz(s′). (4.5)

It is proposed that (4.5) yields the leading contribution
to Gzz(t) for t→∞ and choosing for instance t0 = t/2 the

s- and s′-integration can be performed replacing F (s−s′)
by F (t). This results in

Gzz(t) −→
t→∞

χ̄2
zzF (t) (4.6)

−→
t→∞

αΘ1−sΓ (s+ 1) cos(1
2sπ)χ̄2

zz t
−1−s

where

χ̄zz = 2
∂ 〈σz〉
∂ε

=
∫ ∞

0

dtGzz(t) (4.7)

is static susceptibility which is assumed to be finite. This
means that the asymptotic behavior of the time dependent
transverse response function is determined by the static
susceptibility and the averaged bath propagator. The bare
parameters ∆, ε and temperature enter only implicitly via
χ̄zz. For the Ohmic case s = 1 the first line of (4.6) is still
valid but in the second line F (t) → 2αΘ−1t−3 has to be
inserted.

There are several points which have to be checked: In
the integrals of (4.5) we have replaced F (s − s′) by F (t)
assuming that the main contribution comes from t−s� t
and s′ � t. This is actually the case for a bath spectrum
with s > 0. If the asymptotic contribution (4.6) is inserted
for Gzz(t− s) or Gzz(s′) in (4.5) corrections ∼ t−1−2s are
obtained.

Instead of P1 some other projector P` could have
been inserted. For a symmetric system with ε = 0
the next nonvanishing contribution is obtained from
` = 3. A corresponding evaluation yields a contribu-
tion 1

2 χ̄
2
zzzzF (t)D2(t) where χ̄zzzz = 8∂3 〈σz〉 /∂ε3 is a

static nonlinear susceptibility. This contribution vanishes
∼ t−3(1+s) for t � β or ∼ T 2t−1−3s for t � β. For ε 6= 0
corrections ∼ t−2(1+s) or ∼ T t−1−2s result from insertion
of P2. In any case (4.6) yields the leading contribution.

Further contributions arise from insertion of
Q = I −

∑
`P`. They are determined by the decay

towards equilibrium. Within perturbation theory or
NIBA [1–3] this decay is exponential and as a result
the leading contribution (4.6) is indeed due to the first
nonvanishing insertion of the projector P` with lowest
` = 1. The above analysis yields the restriction s > 0.
In addition the existence of the static susceptibility (4.7)
has been assumed which may impose further restrictions
[10] on s or α.

The Fourier transform

Ĝzz(ω) =
∫ ∞

0

dt eiωtGzz(t) (4.8)

can be written as

Ĝzz(ω) =
1

χ̄−1
zz − Σ̂zz(ω)

(4.9)

−→
ω→0

χ̄zz + χ̄zzΣzz(ω)χ̄zz (4.10)

with a self energy Σzz(ω) vanishing for ω → 0. With (3.9)
and (4.6)

Σ̂zz(ω)−→
ω→0

F̂ (ω)− F̂ (0) ∼ ωs. (4.11)
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The analysis of the correlation function Czz(t) follows
similar lines. The Fourier transform

Ĉzz(ω) =
∫ ∞
−∞

dt eiωtCzz(t) (4.12)

may be written as

Ĉzz(ω) = Ĝzz(ω)Γ̂zz(ω)Ĉzz(−ω) (4.13)

defining the self energy Γzz(t). Again the leading contribu-
tion at low frequencies or long time is due to an insertion
of P1. Depending on whether a bath response function F
or a bath correlation functionD crosses the insertion point
at t0 several contributions are found. In analogy to (4.5)

Czz(t) =
∫ t

t0

ds
∫ t0

−∞
ds′Gzz(t− s)F (s− s′)Czz(s′) (4.14)

+
∫ t

t0

ds
∫ 0

−∞
ds′Gzz(t− s)D(s− s′)Gzz(−s′).

The second term is identified as due to the long time or
low frequency part of Γzz(t) and therefore

Γ̂zz(ω)−→
ω→0

D̂(ω). (4.15)

The bath propagators fulfill an FDT (3.13) and there-
fore the same holds for the self energy Σzz(ω) and Γzz(ω).
As a consequence the correlation- and response functions
Czz and Gzz also fulfill the FDT. This is not surprising.
It shows the consistency of the above analysis.

The leading time dependence for t→∞ is in analogy
to (4.6)

Czz(t) −→
t→∞

χ̂2
zzD(t) (4.16)

and with (3.15) Czz(t) ∼ t−s−1 for t→ ∞ and t� β. In
the opposite limit t→∞ and t� β an asymptotic decay
∼ T t−s is found from (3.16).

The above result is a generalization of the Shiba rela-
tion originally proposed for the Kondo problem [5] and
generalized to the spin boson problem by Sassetti and
Weiss [4] and others [8,9] for T = 0. Note that their defi-
nition of χ̂zz differs by a factor 4 from the present one.

The analysis of the long time properties of the longi-
tudinal response function

Gxx(t) = (1|σxU(t)σ̃x|ρ̄) (4.17)

follows similar lines. The lowest order projector which can
be inserted is P2 resulting in

Gxx(t)≈
∫ t

t0

ds
∫ t

t0

dr
∫ t0

0

ds′
∫ 0

−∞
dr′ 〈σx(t)σ̃z(s)σ̃z(r)〉

×
[
F (s− s′)D(r − r′) 〈σz(s′)σ̃x(0)σ̃z(r′)〉

+F (s− s′)F (r − r′) 〈σz(s′)σ̃x(0)σz(r′)〉
]

(4.18)

where 〈· · ·〉 are correlation-response functions of higher
order. Investigating the contribution of the first term,
F (s− s′)D(r − r′) is replaced by F (t)D(t) resulting in

Gxx(t) −→
t→∞

χ̄2
xzzF (t)D(t) (4.19)

where

χ̄xzz = 4
∂2 〈σx〉
∂ε2

= 4
∂2 〈σz〉
∂∆∂ε

(4.20)

is a static nonlinear susceptibility. The second term in
(4.18) can be shown to be subdominant for t → ∞. As
a result again the leading contribution at long time has
been expressed in terms of nonlinear susceptibilities and
weighted bath propagators.

The longitudinal correlation function is obtained by
applying fluctuation dissipation theorems. The resulting
asymptotic expression is

Cxx(t)− 〈σx〉2 −→
t→∞

1
2 χ̄

2
xzzD(t)2 (4.21)

decaying ∼ t−2−2s for t� β and ∼ T 2t−2s for t� β. The
same asymptotic behavior for T = 0 has been obtained by
Guinea [11] for s=1. The result obtained by Lang et al. [12]
can not be compared since it refers to the longitudinal
correlation function involving polaron dressed operators
whereas (4.21) involves the bare operator σz .

5 Specific heat

In this section it is shown that thermal properties at low
temperature can also be expressed in terms of static sus-
ceptibilities and bath propagators. The free energy of the
system at temperature T = 1/β is

FT = − 1
β

{
ln Tr e−βH − ln Tr e−βHB

}
(5.1)

where H is given by (3.1) and HB is the Hamiltonian of
the bath without coupling to the spin.

Let me investigate the derivative

∂FT
∂Λk

= − 1√
N
〈xk σz〉

= − 1
N

∫ ∞
0

dt Λk
〈
σz(t)

{
Dk(t)σ̃z(0) + Fk(t)σz(0)

}〉
= − 1

N

∫ ∞
0

dt Λk
{
Dk(t)Gzz(t) + Fk(t)Czz(t)

}
. (5.2)

Because of the 1/
√
N dependence of the spin-bath cou-

plings the functions Gzz(t) and Czz(t) can be treated as
independent on Λk for N → ∞. This means that F is a
linear functional of Λ2

kDk(t) and Λ2
kFk(t) respectively.

The free energy FT depends on temperature only via
Dk(t). In order to evaluate δFT = FT − F0 the excess

δDk(t) = Dk(t;T )−Dk(t; 0)

=
1
ωk

1
eβωk − 1

cosωkt (5.3)
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is introduced. At low temperature the leading contribution
is linear in δDk(t) and

δFT −→
T→0

− 1
2N

∑
k

Λ2
k

∫ ∞
0

dt δDk(t)Gzz(t) (5.4)

= − 1
2

∫ ∞
0

dt δD(t)Gzz(t)

with δD(t) given by (3.16). For T → 0 the integral in (5.4)
can be evaluated by using δD(0) instead of δD(t) because
this function actually varies on a time scale β = 1/T →∞.
This results in

δFT −→
T→0

− 1
2 χ̄zzδD(0) (5.5)

= − 1
2 χ̄zz αT

2 (Θ/T )1−s Γ (s+ 1) ζ(s+ 1).

The specific heat is obtained from

C = −T ∂2δFT
∂T 2

(5.6)

resulting in

C = 1
2 χ̄zz αT

sΘ1−s s (s+ 1)Γ (s+ 1) ζ(s+ 1). (5.7)

which is a generalization of the Wilson ratio [4]. Note again
the difference in the definition of the transverse static
susceptibility.
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